合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領(lǐng)域的應(yīng)用(上)
> 生物表面活性劑優(yōu)點(diǎn)與應(yīng)用
> 應(yīng)用單分子層技術(shù)分析磷脂酶與不同磷脂底物特異水解性能:結(jié)果和討論、結(jié)論!
> 助劑臨界膠束濃度對(duì)芒果細(xì)菌性角斑病防治藥劑表面張力的影響(一)
> 非-陰離子型醇醚磺酸鹽表面活性劑降低魏崗原油的表面張力(一)
> 致密砂巖儲(chǔ)層CO2-EOR項(xiàng)目研究重點(diǎn)與進(jìn)展
> 座滴法測(cè)量玻璃熔體表面張力準(zhǔn)確性及影響因素
> LB膜技術(shù)制備納米薄膜保護(hù)鋰電池極片的方法【發(fā)明方案】
> 5種聚萜烯馬來酸酐聚乙二醇酯高分子表面活性劑表面張力、乳化性能等研究(一)
> 怎么算肥皂泡的表面張力?
推薦新聞Info
-
> 軟物質(zhì)褶皺形成機(jī)制新發(fā)現(xiàn):液體浸潤(rùn)、表面張力與接觸線釘扎效應(yīng)
> LB膜技術(shù)在界面相互作用研究中的應(yīng)用
> LB膜技術(shù)在生物基材料改性中的應(yīng)用
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(四)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(二)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(一)
> LB膜技術(shù)在生物基材料制備、改性和界面相互作用研究
> LB膜技術(shù)及LB膜成膜過程、應(yīng)用領(lǐng)域
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測(cè)及消化吸收特性研究(四)
不動(dòng)桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(二)
來源:化學(xué)與生物工程 瀏覽 638 次 發(fā)布時(shí)間:2024-12-23
1.3生物表面活性劑的特性分析
1.3.1生物表面活性劑的制備
將菌株XH-2在優(yōu)化后的培養(yǎng)基中發(fā)酵培養(yǎng)60h,經(jīng)紗布初過濾的發(fā)酵液在4℃、10 000r·min-1下離心20min,取上清液用6mol·L-1HCl溶液調(diào)節(jié)pH值至2.0,用等體積的乙酸乙酯溶液萃取2次,合并有機(jī)相于旋轉(zhuǎn)蒸發(fā)儀上濃縮,將濃縮液倒入燒杯中,待自然揮發(fā)干后即得生物表面活性劑粗品。
1.3.2生物表面活性劑對(duì)溫度、pH值和鹽度的耐受性
將生物表面活性劑粗品配制成濃度為0.3g·L-1的溶液,分別在4℃、室溫、60℃、100℃條件下處理30min,冷卻至室溫,測(cè)定其表面張力。
用1mol·L-1HCl溶液或1mol·L-1NaOH溶液調(diào)節(jié)生物表面活性劑溶液的pH值分別為2、4、6、8、10、12,均于室溫下放置12h,測(cè)定其表面張力。
加入適量氯化鈉使生物表面活性劑溶液的鹽度分別為0%、1%、3%、5%、7%、9%,均于室溫下放置12h,測(cè)定其表面張力。
1.3.3臨界膠束濃度(CMC)的測(cè)定
用蒸餾水將生物表面活性劑粗品配制成不同濃度的溶液,在室溫下測(cè)定其表面張力。根據(jù)生物表面活性劑濃度與表面張力的變化曲線圖得出臨界膠束濃度。
1.3.4生物表面活性劑成分的初步鑒定
表面活性劑的鑒定:采用亞甲基藍(lán)-氯仿實(shí)驗(yàn)。將生物表面活性劑粗品配制成濃度為0.3 g·L-1的溶液,取5 mL表面活性劑溶液,依次加入10 mL亞甲基藍(lán)和5 mL氯仿,充分混勻,靜置幾分鐘后觀察其顏色。若氯仿層顏色變深,而水層幾乎無色,表明樣品屬于陰離子型表面活性劑;若水層顏色變深,而氯仿層幾乎無色,表明樣品屬于陽離子型表面活性劑;若兩層顏色大致相同,且水層呈乳液狀,表明樣品屬于非離子型表面活性劑。
定性分析:將生物表面活性劑粗品配制成一定濃度的溶液,用1 mol·L-1HCl溶液調(diào)節(jié)pH值到2左右,于4℃靜置過夜,觀察現(xiàn)象。若產(chǎn)生白色沉淀,表明其為脂肽或脂蛋白類表面活性劑;若沒有白色沉淀產(chǎn)生,表明其為糖脂類表面活性劑。
紅外光譜(FTIR)分析:將生物表面活性劑粗品用KBr壓片法進(jìn)行紅外光譜分析。
2結(jié)果與討論
2.1不同碳、氮源對(duì)菌株XH-2產(chǎn)生物表面活性劑的影響(圖1)
圖1碳、氮源對(duì)菌株XH-2產(chǎn)生物表面活性劑的影響
由圖1a可知,菌株XH-2以柴油為碳源時(shí),發(fā)酵液的排油圈直徑為0;以泔水油為碳源時(shí),排油圈直徑最大(5.1 cm),相對(duì)應(yīng)的表面張力最小(31.1 mN·m-1)。相較于葡萄糖、淀粉、甘油這些常用碳源,泔水油用作產(chǎn)生物表面活性劑的原料尚未見報(bào)道。以泔水油為原料生產(chǎn)生物表面活性劑,既能廢物利用,又節(jié)能環(huán)保,具有顯著的現(xiàn)實(shí)意義。由圖1b可知,當(dāng)泔水油濃度為3%時(shí),表面張力最小(30.49 mN·m-1),排油圈直徑最大(4.8 cm)。因此,確定最適碳源為3%泔水油。
由圖1c可知,以豆粕為氮源時(shí),發(fā)酵液的表面張力最小(29.69 mN·m-1),相對(duì)應(yīng)的排油圈直徑最大(6.1 cm);當(dāng)采用無機(jī)氮源尿素和硫酸銨時(shí),雖然發(fā)酵液的表面張力較小,分別為30.62 mN·m-1和30.56 mN·m-1,但相對(duì)應(yīng)的排油圈直徑也小,分別為3.75 cm和3.25 cm。已有利用無機(jī)氮源(如氯化銨、硝酸鈉等)進(jìn)行發(fā)酵生產(chǎn)生物表面活性劑的相關(guān)報(bào)道,而在本研究中最適的氮源是豆粕。由圖1d可知,隨著豆粕濃度的增大,排油圈直徑增大,在豆粕濃度為5%時(shí),排油圈直徑達(dá)到最大(6.75 cm),表面張力最小(25.83 mN·m-1)。因此,確定最適氮源為5%豆粕。
2.2最佳接種量、鹽度、初始pH值的確定(圖2)
接種量影響微生物所產(chǎn)生物表面活性劑的產(chǎn)量。接種量過大,培養(yǎng)液中細(xì)菌的初始濃度高,過量的菌體在生長(zhǎng)過程中因消耗大量的營(yíng)養(yǎng)底物而使生物表面活性劑的產(chǎn)量降低;接種量過小,培養(yǎng)液中菌體濃度低,培養(yǎng)周期延長(zhǎng)。由圖2a可知,在接種量為4%時(shí),表面張力最小(30.39 mN·m-1),相對(duì)應(yīng)的排油圈直徑最大(5.25 cm);接種量超過4%后,表面張力增大。因此,確定最佳接種量為4%。
圖2接種量(a)、鹽度(b)和初始pH值(c)對(duì)菌株XH-2產(chǎn)生物表面活性劑的影響
鹽度調(diào)節(jié)細(xì)胞內(nèi)外的滲透壓,影響微生物的新陳代謝和酶的活性,鹽度過高或過低都會(huì)對(duì)微生物的新陳代謝產(chǎn)生不利影響。由圖2b可知,鹽度為2%時(shí),表面張力最小(25.75 mN·m-1),排油圈直徑最大(7.25 cm);而鹽度低于或高于2%時(shí),發(fā)酵液的表面張力增大,排油圈直徑減小。因此,確定菌株XH-2產(chǎn)生物表面活性劑的最適鹽度為2%。
微生物的生命代謝活動(dòng)與環(huán)境的pH值密切相關(guān)。微生物機(jī)體內(nèi)的生物化學(xué)反應(yīng)一般是酶促反應(yīng),參與反應(yīng)的酶都有其相應(yīng)的最適pH值范圍,一般認(rèn)為pH值6.5~8.5有利于微生物產(chǎn)生物表面活性劑。由圖2c可知,菌株XH-2在初始pH值5.0~10.0范圍內(nèi),其表面張力基本上是先減小后增大。當(dāng)初始pH值為6.0時(shí),發(fā)酵液的排油圈直徑最大(7.1 cm),表面張力最小(25.25 mN·m-1);當(dāng)初始pH值為10.0時(shí),發(fā)酵液的排油圈直徑最小(5.2 cm),表面張力為26.91 mN·m-1。因此,確定菌株XH-2產(chǎn)生物表面活性劑發(fā)酵培養(yǎng)基的最適初始pH值為6.0。