合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> ?馬蘭戈尼效應(yīng)在生活的應(yīng)用【舉例】
> 不同表面張力液體的多樣定向運輸模式,如何實現(xiàn)?
> ?SDS、CTAC、APG表面活性劑對磷酸鹽粘結(jié)劑表面張力的影響研究
> 激光釬涂金剛石的涂層形成與表面張力有何關(guān)系(一)
> 兩親性納米凝膠ANGs的親水性與乳液穩(wěn)定性和相轉(zhuǎn)變行為之間的定量關(guān)系
> 納米活性顆粒表面潤濕性測量方法及具體操作步驟
> 不同質(zhì)量濃度、pH、鹽度對三七根提取物水溶液表面張力的影響(一)
> 不同質(zhì)量濃度、pH、鹽度對三七根提取物水溶液表面張力的影響(二)
> 液態(tài)Ag-O系表面張力和表面過剩量計算、氧氣壓力和溫度的預測模型——摘要、簡介
> 硬脂酸鈉、油酸鈉、亞油酸鈉對Ca2+活化石英浮選差異性、表面張力的影響
推薦新聞Info
-
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 電場處理水浮力、及與普通水的表面張力系數(shù)測定
> 軟物質(zhì)褶皺形成機制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應(yīng)
> LB膜技術(shù)在界面相互作用研究中的應(yīng)用
> LB膜技術(shù)在生物基材料改性中的應(yīng)用
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(四)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
來源:合肥工業(yè)大學 瀏覽 854 次 發(fā)布時間:2024-07-22
目前可以用作鋰負極保護涂層的材料有金屬氧化物、固態(tài)電解質(zhì)、二維材料等。其中二維材料具有原子厚度片狀結(jié)構(gòu),其具有獨特的電子、光學和機械性能,已經(jīng)成為了技術(shù)應(yīng)用以及未開發(fā)的基礎(chǔ)科學領(lǐng)域中最有潛力的材料,是鋰負極涂層的理想材料。其中六方氮化硼(h-BN)具有層狀結(jié)構(gòu),易剝離,是一種新興的涂層;其機械強度(0.7TPa)高、絕緣性好,并具有優(yōu)異的化學惰性,與一般的無機酸堿溶液、氧化劑均不發(fā)生反應(yīng);h-BN熱穩(wěn)定性極高,在惰性氣體氛圍中能耐2000℃的高溫而不發(fā)生分解,同時也是陶瓷材料中熱導率最高的材料。但是二維材料的單片剝離困難,經(jīng)濟成本較高,且剝離的二維材料納米片易重新聚合,發(fā)生團聚,難以形成單層納米薄膜。
在文獻報道中,研究者通常采用基于真空的濺射技術(shù)如原子層沉積技術(shù)(ALD)、化學氣相沉積(CVD)、等離子體增強化學氣相沉積(PECVD)等方法制備二維材料薄膜。2017年Joseph M.Wofford等人在《Scientific Reports》期刊中發(fā)表的A Hybrid MBE-basedGrowth Method forLarge-area Synthesis of Stacked Hexagonal Boron Nitride/Graphene Heterostructures文章中利用高溫等離子體輔助分子束外延技術(shù),實現(xiàn)了高質(zhì)量h-BN薄膜在C處理的Ni(111)襯底上的直接外延生長,其中高溫泄流室(1850℃)用于提供B元素,N元素則通過使用工作在02sccmN流量和350W功率下的射頻等離子電源產(chǎn)生,生長時間約為5h。之后Ni中的C原子在h-BN/Ni界面析出,故形成了h-BN/石墨烯異質(zhì)結(jié)。此外2017年TQ.PVuong等人在《2D Materials》期刊中發(fā)表的Ultraviolet Emission in HexagonalBoronNitride Grown by High-temperature Molecular Beam Epitaxy同樣通過MBE技術(shù),直接在剝離的石墨上合成了單層或多層h-BN薄膜,還觀察到與h-BN晶格和基底排列均勻目周期為15nm的六邊形莫爾條紋。以上為MBE法制備h-BN薄膜奠定了基礎(chǔ),拓寬了h-BN大面積連續(xù)生長的道路。2007年YoichiKubota等人在在《Science》期刊中發(fā)表的DeepUltraviolet Light-emitting Hexagonal BoronNitride Synthesized at AtmosphericPressure文章中報道了一種使用Ni-Mo基溶劑在大氣壓下合成高質(zhì)量h-BN晶體的方法,即先將原始的hBN粉末放入坩堝中,然后將金屬溶劑置于粉末上,之后將它們置于爐中升至高溫(1350-1500℃),保溫12h后降溫,即可以在Ni-Mo金屬和h-BN粉末的接觸面制得h-BN薄片。
現(xiàn)有二維材料制備薄膜實例中大多是基于真空的濺射技術(shù),例如原子層沉積技術(shù)(ALD)、分子層沉積技術(shù)(MLD)、磁控濺射以及真空鍍膜等。雖然基于真空濺射技術(shù)具有自限性、層層沉積增長的特點,可精密控制原子鍍層的厚度。但是這種濺射技術(shù)通常需要大型的專業(yè)設(shè)備、有限體積的真空腔體、昂貴的靶材,且維護成本較高,無法實現(xiàn)大規(guī)模應(yīng)用。
針對以上問題,本發(fā)明使用(Langmuir-Blodgett)LB膜技術(shù)制備一種納米薄膜保護鋰電池極片及鋰離子電池。
為達到上述目的,本發(fā)明采用如下技術(shù)方案:
一種基于LB膜技術(shù)制備鋰電池極片保護層的方法,其包括以下步驟:
(1)將二維材料納米片分散在分散液中,進行超聲處理;
(2)將超聲處理后的處理液進行離心后,取上清液,烘干得到分層后的二維材料粉末;
(3)在高溫爐中燒結(jié),二維材料表面氧化造孔;
(4)再加入乙醇水溶液中超聲分散形成混合液,將混合液滴在水面上,二維材料分子自組裝在水面上形成二維材料薄膜;
(5)將銅箔置入水中,將二維材料薄膜轉(zhuǎn)移到銅箔上,烘干后放入手套箱中備用;
(6)將銅箔上的二維材料薄膜通過輥壓轉(zhuǎn)移到鋰電池極片上,即在鋰電池極片表面包覆上保護層。
本發(fā)明的關(guān)鍵點在于二維材料納米片經(jīng)處理后在水溶液中進行表面自助裝成膜,本使用LB膜技術(shù)在負極片表面制備保護層,與現(xiàn)有二維材料制備薄膜實例中大多采用的基于真空的濺射技術(shù)(例如原子層沉積技術(shù)(ALD)、分子層沉積技術(shù)(MLD)、磁控濺射以及真空鍍膜等方法)相比,方法操作簡單,制備環(huán)境要求低。
另外,保護層通過物理轉(zhuǎn)移至鋰電池負極片上,對鋰電池負極片進行包覆形成一層薄膜保護層。即在鋰金屬電池中,構(gòu)建一層鋰負極保護層,來阻擋在沉積/剝離過程中由于鋰離子通量不均勻而引起的枝晶,并將電解液和電極分離開,減少電解液的還原消耗。最終達到提高電池循環(huán)壽命和安全性的目的。
本發(fā)明使用LB膜技術(shù)制備一種納米薄膜保護層來保護鋰電池極片,常壓下,二維材料納米片在水溶液表面自助裝成致密單層二維材料納米片薄膜,一步成形涂覆金屬鋰負極,形成薄且熱穩(wěn)定性好的保護層。從而在抑制鋰枝晶生長的同時,還能提高電池內(nèi)部的熱傳導,防止局部過熱,從而提高鋰金屬電池的循環(huán)壽命和安全性。