合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 調(diào)控NMVQ相表面張力對EPDM/NMVQ共混膠性能的影響
> 池塘由于有機物導(dǎo)致水體表面張力增加而產(chǎn)生了泡沫,如何消除?
> PG木質(zhì)素活性劑增產(chǎn)機理、選井條件、應(yīng)用效果
> 油藏環(huán)境中離子強度與類型、溫度對烷基苯磺酸鹽溶液油水界面張力的影響
> ?液層模型:微重力條件下界面張力梯度驅(qū)動對流基本流動規(guī)律【研究成果】
> 基于微納米氣泡的井口注氣裝置可改變油水界面張力,提高原油的采收率
> 探究LB復(fù)合膜的酸致變色特性
> 加入低表面張力活性劑,將自來水廠污泥制備成生物滯留介質(zhì)海綿土
> 低界面張力起泡劑篩選
> 致密砂巖儲層CO2-EOR項目研究重點與進展
推薦新聞Info
-
> 石油磺酸鹽中有效組分的結(jié)構(gòu)與界面張力的關(guān)系
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(二)
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(一)
> ?全自動表面張力儀無法啟動、讀數(shù)不穩(wěn)定等常見故障及解決方法
> 混合型烷醇酰胺復(fù)雜組成對油/水界面張力的影響規(guī)律(二)
> 混合型烷醇酰胺復(fù)雜組成對油/水界面張力的影響規(guī)律(一)
> 懸滴法測量液體表面張力系數(shù)的測量裝置結(jié)構(gòu)組成
> 多晶硅蝕刻液的制備方法及表面張力測試結(jié)果
> 高溫多元合金表面張力的計算方法及裝置、設(shè)備
> 納米生物質(zhì)體系性能評價及驅(qū)油特性實驗研究
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論
來源:化工學(xué)報 瀏覽 328 次 發(fā)布時間:2024-07-31
2實驗結(jié)果與討論
本研究測定了CO2-環(huán)戊烷/環(huán)己烷/環(huán)辛烷/甲苯/乙苯/乙基環(huán)己烷體系的界面張力,測量的溫度范圍為40~120℃,壓力范圍為0.27~14.70 MPa。實驗數(shù)據(jù)見表1。并繪出實驗數(shù)據(jù)的標(biāo)準(zhǔn)差圖,結(jié)果如圖3所示。結(jié)果表明,所有數(shù)據(jù)的標(biāo)準(zhǔn)差均在0.36 mN/m以內(nèi),證明數(shù)據(jù)的準(zhǔn)確性較好。其中,標(biāo)準(zhǔn)差的計算如式(3)所示
圖2 80℃下CO2-正十一烷體系界面張力-壓力對比圖
圖3 CO2-不同結(jié)構(gòu)(環(huán)烷烴/芳香烴)界面張力的標(biāo)準(zhǔn)差
式中,s為數(shù)據(jù)的標(biāo)準(zhǔn)差;m為每個數(shù)據(jù)點測量的次數(shù),m=3;xi為每次測量得到的數(shù)據(jù)值,mN/m;xˉ為3次測量結(jié)果的平均值,mN/m。
2.1壓力與溫度的影響
為了說明溫度和壓力對測量體系界面張力數(shù)據(jù)的影響,繪出了界面張力隨壓力變化的等溫線,結(jié)果如圖4(a)~(f)所示。從圖4中可知,壓力對界面張力影響很大。溫度一定時,界面張力隨壓力近乎呈直線下降。這是因為:低壓下液體內(nèi)部主體分子對界面層分子的吸引力大,使得CO2-原油體系界面張力大。隨著壓力的升高,原油的密度會增加,CO2溶解度也會增加,但CO2溶解度的增加會導(dǎo)致原油密度的減小,二者作用平衡,使得原油的密度變化不大。而CO2的密度則會隨著壓力的升高而急速增加,使得其對界面層分子的作用增強,減小了界面層分子所受到的合力,從而使體系的界面張力減小。圖5給出了100℃時,CO2-甲苯體系液滴形狀隨壓力的變化趨勢,結(jié)果發(fā)現(xiàn),隨著壓力的升高,界面張力越來越小,使得液滴形狀越來越小,且逐漸變窄。
表1 CO2-環(huán)烷烴/芳香烴組分的IFT值
溫度對界面張力的影響比較復(fù)雜,首先溫度影響界面張力隨壓力的下降速度,隨著溫度的升高,界面張力下降速度越來越緩,使得不同等溫線在某個壓力范圍內(nèi)有交叉點;其次,不同區(qū)域內(nèi),溫度對界面張力的影響不同。在交叉點以上,界面張力隨溫度的升高而減小,而交叉點之下,界面張力隨溫度的升高而增大。為了分析溫度對CO2溶解度的影響,將Gibbs-Helmholtz方程計算的溶解度對溫度的導(dǎo)數(shù)與偏摩爾熵聯(lián)系起來,如式(4)~式(7)所示
綜上所述,在較低壓力下,溫度的升高致使CO2的溶解度升高,溶解度的增加導(dǎo)致CO2-原油的界面張力降低。較高壓力下,CO2溶解度隨著溫度的升高而降低,因而界面張力在交叉點之后隨著溫度的升高而增大。
圖4 CO2-不同結(jié)構(gòu)(環(huán)烷烴/芳香烴)界面張力的等溫線
圖5 100℃時CO2-甲苯體系液滴形狀隨壓力的變化圖
2.2碳數(shù)的影響
為探究碳原子數(shù)對界面張力的影響,選取80℃下,CO2-環(huán)戊烷/環(huán)己烷/環(huán)辛烷體系與CO2-甲苯/乙苯體系分別進行研究比較。由圖6可以看出,對于CO2-形態(tài)結(jié)構(gòu)相同的環(huán)烷烴/芳香烴體系,界面張力隨著碳原子數(shù)的增加而增大,且下降趨勢大致相同。許多學(xué)者曾對CO2-正構(gòu)烷烴體系的變化規(guī)律進行研究,發(fā)現(xiàn)在同一溫度下,界面張力皆隨著鏈長的增加而增大。結(jié)果表明,CO2-形態(tài)結(jié)構(gòu)相同分子具有相同的規(guī)律。
圖6 CO2-相似結(jié)構(gòu)(環(huán)烷烴/芳香烴)界面張力的等溫線
2.3不同結(jié)構(gòu)的影響
為探究相同碳原子數(shù)、不同結(jié)構(gòu)的影響,選取60℃下CO2-乙基環(huán)己烷/乙苯體系進行比較。由圖7可以看出,兩種體系的界面張力下降趨勢基本相同,但CO2-乙苯的界面張力略高于CO2-乙基環(huán)己烷體系。姬澤敏等、Nagarajan等曾對CO2-苯/環(huán)己烷體系的界面張力進行過測定,發(fā)現(xiàn)兩種體系界面張力隨壓力變化的等溫線幾乎重合,而CO2-乙基環(huán)己烷/乙苯體系界面張力差異明顯。從分子層面考慮,這是由于乙苯的極性比乙基環(huán)己烷大,從而導(dǎo)致乙苯分子間的相互作用更強,處于界面層的乙苯分子更難擴散到CO2中去,使得CO2-乙苯體系的界面張力大于CO2-乙基環(huán)己烷體系。
圖7 60℃時CO2-乙苯/乙基環(huán)己烷界面張力對比
2.4數(shù)據(jù)關(guān)聯(lián)
2.4.1經(jīng)驗方程商巧燕曾提出了CO2-正構(gòu)烷烴界面張力的經(jīng)驗方程,將CO2-正構(gòu)烷烴二元體系的界面張力關(guān)聯(lián)為溫度、壓力、碳原子數(shù)的關(guān)系。為了更進一步分析分子結(jié)構(gòu)等對體系界面張力的影響,本文系統(tǒng)研究了CO2-多種烴類結(jié)構(gòu)(含正構(gòu)烷烴、環(huán)烷烴、芳香烴)的界面張力數(shù)據(jù),分析溫度、壓力、碳原子數(shù)以及分子結(jié)構(gòu)對界面張力的影響,在商巧燕提出的CO2-正構(gòu)烷烴界面張力的經(jīng)驗方程的基礎(chǔ)上,加入了偏心因子表達分子形狀,提出了CO2-正構(gòu)烷烴/環(huán)烷烴/芳香烴體系界面張力的經(jīng)驗公式。公式形式如下
式中,t為溫度,℃;p為壓力,MPa;γ為界面張力,mN/m;N為碳原子數(shù);w為偏心因子;a、b、c、d、e、f、h、j為回歸參數(shù)。
2.4.2實驗數(shù)據(jù)回歸及模型參數(shù)的求取本研究系統(tǒng)收集了文獻數(shù)據(jù),并將研究測定的實驗數(shù)據(jù),共計932個數(shù)據(jù)用于回歸,回歸所用數(shù)據(jù)見表2?;貧w參數(shù)由最小二乘法得到,其目標(biāo)函數(shù)如式(9)所示。采用平均相對偏差(AARD)和均方根誤差(RMSE)表示計算效果,如式(10)、式(11)所示?;貧w結(jié)果見表3。
表2 CO2-原油體系回歸數(shù)據(jù)匯總
表3式(8)的回歸參數(shù)值
式中,γexp代表實驗值;γcal代表計算值;n為數(shù)據(jù)點個數(shù)。
用于擬合的全部數(shù)據(jù)中,86.4%的數(shù)據(jù)的平均相對偏差在20%以內(nèi)。界面張力小于5 mN/m時,偏差較大。式(8)對于CO2-正構(gòu)烷烴/芳香烴/不帶支鏈的環(huán)烷烴/芳香烴體系的擬合結(jié)果較好,對于CO2-帶支鏈環(huán)烷烴體系擬合結(jié)果相對較差。
3結(jié)論
本文采用懸滴法測定了CO2-環(huán)戊烷/環(huán)己烷/環(huán)辛烷/甲苯/乙苯/乙基環(huán)己烷的界面張力,測量范圍為40~120℃,0.27~14.70 MPa。探討了壓力、溫度、碳原子數(shù)以及分子結(jié)構(gòu)對界面張力的影響并提出了計算CO2-原油組分界面張力的經(jīng)驗方程。得出以下結(jié)論。
(1)CO2密度隨著壓力的升高而增大,使得其對液體界面層的分子引力增大,從而降低界面層分子所受合力。因此,溫度一定時,CO2-原油組分界面張力隨壓力的升高而減小。
(2)在較低壓力下,CO2溶解度隨溫度的升高而增大;在較高壓力下,趨勢相反。溶解度的增大會引起界面張力的減小。因此,溫度主要影響界面張力隨壓力下降的速度,隨著溫度的升高,界面張力的下降速度越來越緩慢。
(3)具有相同形態(tài)結(jié)構(gòu)的原油分子-CO2體系,其界面張力變化規(guī)律相同,皆隨著碳數(shù)的增加而增大。
(4)分子間作用力可影響界面張力的變化。物質(zhì)的分子間作用力增強,導(dǎo)致內(nèi)部主體分子的對界面層的引力增大,從而增大體系的界面張力。
(5)對實驗所測以及文獻的數(shù)據(jù)進行了關(guān)聯(lián),其平均相對偏差為11.01%。結(jié)果表明,此經(jīng)驗方程可較好地用于CO2-正構(gòu)烷烴/環(huán)烷烴/芳香烴體系界面張力的計算。且與狀態(tài)方程結(jié)合密度梯度理論相比,無需相平衡數(shù)據(jù)及影響因子參數(shù),應(yīng)用更為簡便??蔀榻窈笥嬎愣嘣M分界面張力提供支持。
符號說明
AARD——平均相對偏差
de——懸滴最大直徑,m
ds——距油滴頂點垂直距離為de處油滴截面直徑,m
g——重力加速度,g=9.80 m/s2
m——每個數(shù)據(jù)測量的次數(shù),m=3
N——碳原子數(shù)
n——數(shù)據(jù)點個數(shù)
p——壓力,MPa
psys——體系壓力,Pa
R——氣體常數(shù),R=8.314 J/(mol·K)
RMSE——均方根誤差
s——數(shù)據(jù)的標(biāo)準(zhǔn)差
T——體系溫度,K
t——溫度,℃
x2——氣體溶質(zhì)在飽和時的摩爾分?jǐn)?shù)
xi——測量得到的數(shù)據(jù)值,mN/m
xˉ——3次測量結(jié)果的平均值,mN/m
γ——界面張力,mN/m
Δρ——兩相密度差,kg/m3
下角標(biāo)
exp——實驗值
cal——計算值
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論