新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 正構烷烴與異構烷烴比哪個界面張力高?界面張力對?異構烷烴的影響
> 表面張力儀滿足不同的測試要求
> 無機粒子對TPAE界面張力、發(fā)泡、抗收縮行為的影響(四)
> 表面張力測量儀的定義、分類及特點
> 誘導期測定法研究NaCl的添加對碳酸鋰固-液界面張力等成核動力學參數(shù)影響——實驗部分
> 溫度對甜菜堿短鏈氟碳表面活性劑表面張力、鋪展、發(fā)泡性能影響(二)
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——材料與方法
> 不同表面張力液體的多樣定向運輸模式,如何實現(xiàn)?
> W/O型Pickering乳液油水間的界面張力對乳液穩(wěn)定性的影響
> 電極與溶液界面的吸附現(xiàn)象
推薦新聞Info
-
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關系研究(一)
> 電場處理水浮力、及與普通水的表面張力系數(shù)測定
> 軟物質褶皺形成機制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應
> LB膜技術在界面相互作用研究中的應用
> LB膜技術在生物基材料改性中的應用
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關系(四)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關系(三)
溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(二)
來源:化工學報 瀏覽 210 次 發(fā)布時間:2025-05-13
1.2數(shù)據(jù)處理
計算系統(tǒng)中包括兩個界面,根據(jù)界面張力γ定義,系統(tǒng)中γ可由式(2)計算
式中,pxx,pyy,pzz分別為沿x,y,z方向壓強張量對z向的角分量。
吉布斯分界面(Gibbs dividing surface,GDS)為以體相為參照,垂直于界面方向上CO2相多余水分子與溶液相缺乏水分子相等的位置,其厚度采用0.1~0.9倍水密度之間的距離表示。
界面過余量表征物質在界面和體相中的量差異,本文中CO2-NaCl系統(tǒng)界面處i分量的界面總過余量可用式(3)表示
2結果與討論
2.1 IFT值的變化
本文分別模擬了343 K和373 K的各壓強下鹽濃度為1.89 mol·L-1的CO2-NaCl系統(tǒng),IFT的計算結果示于圖2。由圖2可以看出,模擬所得的IFT值與Chalbaud等的實驗數(shù)據(jù)吻合較好。在溫度為343 K時[圖2(a)],IFT值隨著壓強的不斷升高,其減幅逐漸下降,最終在壓力平衡點pplateau=15 MPa之后達到穩(wěn)定值34 mN·m-1。373 K時[圖2(b)]的IFT值變化與343 K時極為相似,IFT值同樣隨著壓強的升高而下降,且下降速度不斷趨于平緩,由于高壓情況下實驗設備等因素受限制,實驗方法尚未得到25 MPa以上的數(shù)據(jù)點,故在實驗壓強范圍內并未觀測到壓力平衡點。而本文應用分子模擬的方法,成功模擬了25~35 MPa下的CO2-NaCl系統(tǒng),觀測到壓強在pplateau=25 MPa之后達到穩(wěn)定值33 mN·m-1。
圖2 343 K和373 K下CO2-NaCl系統(tǒng)的IFT值
對比圖2(a)與圖2(b)還可以發(fā)現(xiàn),當鹽濃度一定(1.89 mol·L-1)時,pplateau之前的CO2-NaCl系統(tǒng)任意壓強點的IFT值在溫度為343 K時均小于373 K;同時隨著壓強的不斷升高,兩者差值不斷縮??;而至壓力平衡點之后兩溫度下的IFT穩(wěn)定值相接近,故溫度對高壓系統(tǒng)IFT穩(wěn)定值的影響不大。此外,由于343 K下壓力平衡點為15 MPa,373 K壓力平衡點為25 MPa,故可推測壓力平衡點會隨溫度升高而增大。
2.2密度分布圖
圖3 343 K和373 K下界面CO2、H2O、鹽離子密度
為從分子角度更加詳細地描述界面性質的變化,本文選取并計算了界面處2 nm厚度區(qū)域的CO2、H2O、Na+及Cl-的密度,結果示于圖3。由圖3可以觀測到:當從CO2相向溶液相過渡時,CO2密度逐漸下降,H2O密度則逐漸上升;而鹽離子密度則從界面中心向溶液相,由0逐漸達到某一穩(wěn)定值。由圖3可以看出,溫度一定時,CO2在CO2相的密度隨著壓強的升高逐漸升高。由[圖3(a)]可以看出,溫度為343 K時,當壓強由6.5 MPa升高至22 MPa,CO2相的CO2密度從580 kg·m-3升高至800 kg·m-3左右;而溫度為373 K時[圖3(b)],當壓強由11 MPa升高至17 MPa,CO2相的CO2密度從約420 kg·m-3升高至600 kg·m-3左右。此外,對比圖3(a)和(b)還可知,當壓強恒定在11 MPa時,溫度由343 K升高到373 K,CO2相的CO2密度則由700 kg·m-3降至420 kg·m-3左右。
綜上所述,壓強的升高和溫度的降低均對界面處CO2相的CO2密度產生較大的影響,而CO2密度的變化與IFT值的變化聯(lián)系密切。具體而言,壓強升高或溫度降低時,CO2分子排列緊湊,界面分子受力的不均勻性有所好轉,增大了其與水分子之間的吸引力。高密度下CO2分子更易進入水相,從而破壞了部分水分子間的氫鍵作用,界面上水分子受到內部分子的引力有所降低。以上兩方面因素導致了界面水分子所受內部吸引力的減小,進而使得IFT值下降。