合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 基于表面張力系數(shù)等模擬液滴撞擊熱壁面的動力學(xué)行為(二)
> LB膜分析儀應(yīng)用:不同初始表面壓力條件對VhPLD的磷脂吸附親和力影響(二)
> 純水表面張力與液膜拉伸形變量關(guān)系|純水表面張力測試數(shù)據(jù)
> 各類塑料薄膜的表面張力特定范圍一覽
> 液滴中心液態(tài)區(qū)表面張力法研究PTFE膠粒與NaCl混合液滴圖案形成原理
> 超微量天平應(yīng)用實(shí)例:利用火試金法測定鉛精礦中銀含量
> 變溫過程渣鋼表面張力與界面張力的演變機(jī)制
> 基于朗繆爾張力儀研究抗菌肽與磷脂單層的相互作用
> 超微量天平測定粗鉍中金、銀含量,精密度高、準(zhǔn)確度好
> 電子產(chǎn)品的制造過程中對表面張力的要求
推薦新聞Info
-
> ?我第一次操作表面張力儀的心得體會
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(四)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(三)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(二)
> pH對馬來松香MPA與納米Al2O3顆粒形成的Pickering乳液類型、表/界面張力影響(一)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(四)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(三)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(二)
> 基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(一)
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(三)
強(qiáng)紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(三)
來源:鐵道科學(xué)與工程學(xué)報(bào) 瀏覽 643 次 發(fā)布時(shí)間:2024-11-18
2結(jié)果與討論
2.1質(zhì)量損失
圖2為不同組分水泥石暴露在標(biāo)準(zhǔn)干燥環(huán)境和強(qiáng)紫外線輻射環(huán)境下的質(zhì)量損失變化規(guī)律。結(jié)果表明:隨著齡期的延長,各組試樣的質(zhì)量損失率逐漸增大。其中,質(zhì)量損失率在3~21 d內(nèi)迅速增長,21 d后增長速率放緩并在60 d齡期后趨于穩(wěn)定。這是由于隨著齡期延長,水泥石體系結(jié)構(gòu)趨于穩(wěn)定,水分遷移困難。
圖2水泥石的質(zhì)量損失率
(a)JZ試驗(yàn)組;(b)SRA1試驗(yàn)組;(c)SRA2試驗(yàn)組;(d)SRA3試驗(yàn)組
暴露在強(qiáng)紫外線輻射環(huán)境中的各組試樣的質(zhì)量損失率均明顯大于標(biāo)準(zhǔn)干燥環(huán)境中試樣的質(zhì)量損失率。在3~21 d齡期內(nèi),各組試樣在強(qiáng)紫外線輻射環(huán)境中的質(zhì)量損失增長速率明顯大于其在標(biāo)準(zhǔn)干燥環(huán)境中的質(zhì)量損失增長速率。以基準(zhǔn)組(JZ)為例,強(qiáng)紫外線輻射環(huán)境下水泥石在18 d齡期時(shí)的質(zhì)量損失率達(dá)到標(biāo)準(zhǔn)干燥環(huán)境下水泥石在60 d齡期時(shí)的質(zhì)量損失率(穩(wěn)定值),并最終在90 d齡期時(shí),JZ-UV組的質(zhì)量損失率達(dá)到了JZ-N組的1.5倍。這是強(qiáng)紫外線輻射的“光化學(xué)作用”引起的。當(dāng)水分子吸收光子后,內(nèi)部的電子會發(fā)生能級躍遷,形成不穩(wěn)定的激發(fā)態(tài),并發(fā)生離解反應(yīng),使H—O鍵斷裂生成H+和HO-,從而加速水分子的運(yùn)動,促進(jìn)了水泥石表面的干燥,增大了水泥石體系內(nèi)部與外部環(huán)境的濕度梯度,導(dǎo)致水泥石中的水分快速散失。
對比2種環(huán)境下基準(zhǔn)組(JZ)與SRA試驗(yàn)組的質(zhì)量損失率??梢钥闯?,強(qiáng)紫外線輻射導(dǎo)致的JZ組、SRA1組以及SRA2組的質(zhì)量損失率的增長幅度相當(dāng),而SRA3組的質(zhì)量損失的增長幅度明顯小于其他試驗(yàn)組。同時(shí),SRA的摻入增大了水泥石的質(zhì)量損失率,且隨著SRA摻量的增加,水泥石的質(zhì)量損失率也隨之增加。造成水泥石水分散失增大的因素如下:1)SRA有效降低孔隙溶液的表面張力使水分散失相對容易;2)SRA的加入使水泥試件的開口孔隙或孔隙水易蒸發(fā)的孔隙類型增多;3)當(dāng)干縮變形由毛細(xì)管張力機(jī)理主導(dǎo)(環(huán)境相對濕度大于50%)時(shí),孔溶液表面張力越低,保持飽和的最小孔徑越小,體系失水越多。
2.2干燥收縮
圖3為不同組分水泥石暴露在標(biāo)準(zhǔn)干燥環(huán)境和強(qiáng)紫外線輻射環(huán)境下的干燥收縮變化規(guī)律。結(jié)果表明:各組試樣的干燥收縮和質(zhì)量損失率呈現(xiàn)出相似的趨勢,均隨暴露齡期延長而增大并在60 d齡期后趨于穩(wěn)定。為了進(jìn)一步分析水泥石干縮值隨齡期的變化關(guān)系,將試樣齡期分為7個(gè)區(qū)間,計(jì)算各齡期區(qū)間內(nèi)干縮變形變化量與區(qū)間長度(d)的比值,即為試樣在該區(qū)間內(nèi)的干縮速率,計(jì)算結(jié)果如圖4所示。3~21 d齡期內(nèi)較大,21 d齡期后逐漸放緩并在42 d趨于穩(wěn)定。
圖3水泥石的干燥收縮
(a)JZ試驗(yàn)組;(b)SRA1試驗(yàn)組;(c)SRA2試驗(yàn)組;(d)SRA3試驗(yàn)組
圖4水泥石的干縮變形變化速率
(a)標(biāo)準(zhǔn)干燥環(huán)境;(b)強(qiáng)紫外線輻射環(huán)境
比較2種環(huán)境下各組試樣的干縮變形變化規(guī)律,發(fā)現(xiàn)基準(zhǔn)組與SRA試驗(yàn)組呈現(xiàn)出不一樣的變化趨勢。由圖4可知,在強(qiáng)紫外線輻射環(huán)境下,基準(zhǔn)組(JZ)在3~21 d齡期內(nèi)的干縮速率遠(yuǎn)高于其在標(biāo)準(zhǔn)干燥環(huán)境下的干縮速率,最終表現(xiàn)為JZ組在強(qiáng)紫外線輻射環(huán)境下的干縮變形增加,說明在溫度和濕度一致的條件下,強(qiáng)紫外線輻射會增大水泥石的干縮變形。
由圖3可知,強(qiáng)紫外線輻射環(huán)境下水泥石在34 d齡期時(shí)的干縮變形值達(dá)到了標(biāo)準(zhǔn)干燥環(huán)境下水泥石在60 d齡期時(shí)的干縮變形值(穩(wěn)定值)。然而,這與質(zhì)量損失的發(fā)展并不同步,說明暴露養(yǎng)護(hù)早期強(qiáng)紫外線輻射引起的水分蒸發(fā)主要來自較大的孔隙,這部分孔隙水的散失不會引起毛細(xì)管壓力,因此沒有出現(xiàn)明顯的干縮變形。隨著暴露齡期的延長,經(jīng)過強(qiáng)紫外線照射的水泥石體系中的自由水被大量消耗,毛細(xì)孔水和凝膠水開始失去,毛細(xì)管彎月面形成,加之水化反應(yīng)減慢及水分散失留下較多的毛細(xì)孔,強(qiáng)紫外線輻射環(huán)境下水泥石的干縮變形迅速增加。
與基準(zhǔn)組(JZ)不同,強(qiáng)紫外線輻射導(dǎo)致的SRA試驗(yàn)組干縮速率的增長僅體現(xiàn)在3~7 d齡期內(nèi)。與JZ組相比,SRA試驗(yàn)組在強(qiáng)紫外線輻射環(huán)境中的干縮變形沒有明顯增長。此外,隨著SRA摻量的降低,強(qiáng)紫外線輻射導(dǎo)致的水泥石干縮變形的增長幅度減小。其中,SRA1組在強(qiáng)紫外線輻射下的干縮變形小于其在標(biāo)準(zhǔn)干燥環(huán)境下的干縮變形;SRA2組在強(qiáng)紫外線輻射下的干縮變形與其在標(biāo)準(zhǔn)干燥環(huán)境下的相當(dāng);SRA3組在強(qiáng)紫外線輻射下的干縮變形大于其在標(biāo)準(zhǔn)干燥環(huán)境下的干縮變形。
為了進(jìn)一步分析SRA試驗(yàn)組在2種環(huán)境下干縮變形隨摻量變化的規(guī)律,計(jì)算了SRA試驗(yàn)組相對于基準(zhǔn)組的干縮降低率,即減縮率。計(jì)算結(jié)果如圖5所示:在試驗(yàn)齡期內(nèi),摻加SRA的水泥石在強(qiáng)紫外線輻射環(huán)境下的減縮率維持在相對穩(wěn)定的水平;14 d齡期后,相同摻量的SRA試驗(yàn)組在強(qiáng)紫外線輻射環(huán)境下的減縮率逐漸接近并最終超過其在標(biāo)準(zhǔn)干燥環(huán)境下的減縮率。然而,隨著減縮劑摻量的增加,強(qiáng)紫外線輻射環(huán)境下減縮率的提升幅度受到限制。具體而言,SRA摻量為3%時(shí),減縮效果的提升幅度非常微弱。這也導(dǎo)致了在強(qiáng)紫外線輻射下,SRA試驗(yàn)組的干縮變形增長幅度隨著摻量變化呈現(xiàn)出不同的規(guī)律。
圖5摻加SRA的水泥石在不同齡期的減縮率
結(jié)合水泥石質(zhì)量損失的結(jié)果,發(fā)現(xiàn)強(qiáng)紫外線輻射導(dǎo)致水泥石體系失去更多水分,從而增加了孔隙溶液中的SRA濃度,進(jìn)而提高其減縮效果。然而,SRA3組的質(zhì)量損失率增長幅度較小,孔隙溶液中SRA濃度的增加幅度也較小,因此減縮效果的提升幅度相對較小。此外,減縮劑的臨界濃度(CMC)也是限制較大摻量SRA的減縮效果進(jìn)一步提升的原因。當(dāng)減縮劑摻量較小時(shí),孔隙溶液中的SRA濃度增加將提高SRA的減縮效果;當(dāng)減縮劑摻量較大時(shí),孔隙溶液中的SRA濃度將超過臨界濃度(CMC),過量的SRA分子在水中形成膠束,無法繼續(xù)降低孔隙溶液的表面張力。
從圖3中可以觀察到,隨著齡期的延長,干縮曲線SRA2-UV逐漸接近于干縮曲線SRA3-UV,而SRA3-UV的干縮值沒有進(jìn)一步降低。這表明上述分析是合理的。在強(qiáng)紫外線輻射下,當(dāng)減縮劑的摻量超過3%時(shí),其孔隙溶液中的SRA濃度超過臨界濃度(CMC),進(jìn)一步增大摻量不能增強(qiáng)SRA在該應(yīng)用環(huán)境中的減縮效果。