合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 便攜式表面張力儀和氣泡壓力法表面張力計介紹
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產(chǎn)生和測試(二)
> 涂料配方設(shè)計如何選擇潤濕劑?表面張力成為重要決定因素之一
> 變壓器油界面張力檢測方法之準(zhǔn)確性對比
> 觸殺型除草劑與油類助劑防除雜草機(jī)理及效果
> 有機(jī)硅消泡劑作用原理、析出漂油的原因
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(一)
> 低表面張力物系在規(guī)整填料塔中的流體力學(xué)性能和傳質(zhì)性能(二)
> 海洋環(huán)境表面活性物質(zhì)來源及對海洋飛沫氣溶膠數(shù)濃度、粒徑分布、理化性質(zhì)的影響(一)
> 電化學(xué)氧化對液態(tài)金屬表面張力的影響機(jī)制:表面張力可隨電位變化
推薦新聞Info
-
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(二)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(一)
> LB膜技術(shù)在生物基材料制備、改性和界面相互作用研究
> LB膜技術(shù)及LB膜成膜過程、應(yīng)用領(lǐng)域
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(四)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(三)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(二)
> 牡蠣低分子肽LOPs雙重乳液制備、界面性質(zhì)檢測及消化吸收特性研究(一)
> 不同水解時間的Protamex酶對玉米谷蛋白表面張力、泡沫、理化性質(zhì)等的影響(三)
探索界面張力梯度驅(qū)動對流轉(zhuǎn)捩規(guī)律
來源:力學(xué)進(jìn)展 瀏覽 864 次 發(fā)布時間:2024-07-05
界面張力梯度驅(qū)動對流是空間自然對流熱質(zhì)輸運(yùn)的基本形式,對其時空轉(zhuǎn)捩過程、轉(zhuǎn)捩機(jī)制、非線性特征及流動向湍流轉(zhuǎn)捩途徑等基本規(guī)律的研究,一方面可以豐富非線性動力學(xué)的相關(guān)理論,另一方面對于人類認(rèn)識、探索和利用空間環(huán)境也具有重要的應(yīng)用價值,是微重力流體物理的重要研究內(nèi)容和學(xué)科前沿。本文對目前的研究現(xiàn)狀進(jìn)行了總結(jié),重點(diǎn)介紹了研究液層界面張力梯度驅(qū)動對流的實(shí)驗及數(shù)值模擬方法,雖然已有的研究已經(jīng)得到在不同模型和工況下的各種轉(zhuǎn)捩模式,但是在轉(zhuǎn)捩規(guī)律上仍需要更深入的探索,可以從以下幾個方面著手:
(1)理論分析和數(shù)值模擬結(jié)果的正確性需要由實(shí)驗來驗證,空間實(shí)驗可以滿足微重力環(huán)境、長時間觀測的要求,但是空間實(shí)驗有一定難度且機(jī)會來之不易,故而可以考慮進(jìn)一步發(fā)展實(shí)驗手段,以實(shí)現(xiàn)數(shù)值模擬中采用的更豐富的工況;以及加強(qiáng)對實(shí)驗條件的控制,以降低無關(guān)因素的干擾,提高實(shí)驗精度。
(2)目前關(guān)于液層界面張力梯度驅(qū)動對流向湍流的超臨界轉(zhuǎn)捩在數(shù)值方法上主要有流動時序數(shù)據(jù)的分析和分岔問題的數(shù)值算法。流動宏觀量的時序數(shù)據(jù)來自實(shí)驗結(jié)果或者直接數(shù)值模擬,對于后者,需要對于不同參數(shù)分別進(jìn)行數(shù)值模擬,再通過時間序列頻譜及其混沌特性的定量計算分析流動轉(zhuǎn)捩規(guī)律,即在大量的離散的數(shù)據(jù)序列中尋找分岔點(diǎn),故此過程比較繁瑣。而通過構(gòu)造分岔方程對分岔進(jìn)行數(shù)值計算的方法雖然可以一步到位,但是在選取分岔方程,解高維線性、非線性方程等過程中均需要根據(jù)具體的流動模型進(jìn)行調(diào)整,具有一定難度,且對于更加復(fù)雜的流動模式需要更大的計算量,用此算法也無法直接計算得到混沌解。上述兩種方法各有優(yōu)缺點(diǎn),目前在轉(zhuǎn)捩過程的數(shù)值研究中較為常用的仍是在不同參數(shù)下進(jìn)行直接數(shù)值模擬,而后對大量數(shù)據(jù)進(jìn)行頻譜分析,識別分岔點(diǎn);在直接對分岔進(jìn)行數(shù)值計算的研究中,也常常需要通過直接數(shù)值模擬來驗證分岔得到的解的可靠性與準(zhǔn)確性,在今后的研究中可考慮進(jìn)一步將兩種方法結(jié)合運(yùn)用,互相補(bǔ)充、驗證。
(3)液層界面張力梯度驅(qū)動對流向湍流轉(zhuǎn)捩的過程中會產(chǎn)生豐富的流動模式,轉(zhuǎn)捩過程除了與上文提到的液層模型、無量綱參數(shù)(Prandtl數(shù)、高徑比、體積比等)有關(guān),還受到熱邊界條件(如體系是否絕熱)、加熱方式及加熱速率等因素的影響;此外,在具體的應(yīng)用場景中通常有多種流動相互作用,考慮界面張力梯度驅(qū)動對流與其他諸如浮力、電磁場、旋轉(zhuǎn)等效應(yīng)的耦合,對于重新檢視已發(fā)現(xiàn)的轉(zhuǎn)捩途徑以及尋找新的轉(zhuǎn)捩途徑均有一定的積極意義。
(4)目前對于液層界面張力梯度驅(qū)動對流向湍流轉(zhuǎn)捩的研究仍不夠完善,在對超臨界轉(zhuǎn)捩階段的實(shí)驗及數(shù)值模擬研究中觀察到了許多復(fù)雜的轉(zhuǎn)捩模式,但大多只是現(xiàn)象上的描述,并未總結(jié)出普遍的規(guī)律;對于流動最終能否通向混沌暫無普適的判據(jù),流動通向混沌過程中出現(xiàn)的諸如陣發(fā)、鎖頻等特殊的現(xiàn)象也尚未有更本質(zhì)的機(jī)理上的解釋??傊瑢τ谵D(zhuǎn)捩規(guī)律的深入理解,需要界面張力梯度驅(qū)動對流這一非線性模型在理論上的進(jìn)一步發(fā)展,未來道阻且長。